49 research outputs found

    Person Re-identification by Local Maximal Occurrence Representation and Metric Learning

    Full text link
    Person re-identification is an important technique towards automatic search of a person's presence in a surveillance video. Two fundamental problems are critical for person re-identification, feature representation and metric learning. An effective feature representation should be robust to illumination and viewpoint changes, and a discriminant metric should be learned to match various person images. In this paper, we propose an effective feature representation called Local Maximal Occurrence (LOMO), and a subspace and metric learning method called Cross-view Quadratic Discriminant Analysis (XQDA). The LOMO feature analyzes the horizontal occurrence of local features, and maximizes the occurrence to make a stable representation against viewpoint changes. Besides, to handle illumination variations, we apply the Retinex transform and a scale invariant texture operator. To learn a discriminant metric, we propose to learn a discriminant low dimensional subspace by cross-view quadratic discriminant analysis, and simultaneously, a QDA metric is learned on the derived subspace. We also present a practical computation method for XQDA, as well as its regularization. Experiments on four challenging person re-identification databases, VIPeR, QMUL GRID, CUHK Campus, and CUHK03, show that the proposed method improves the state-of-the-art rank-1 identification rates by 2.2%, 4.88%, 28.91%, and 31.55% on the four databases, respectively.Comment: This paper has been accepted by CVPR 2015. For source codes and extracted features please visit http://www.cbsr.ia.ac.cn/users/scliao/projects/lomo_xqda

    Learning Discriminative Features with Class Encoder

    Full text link
    Deep neural networks usually benefit from unsupervised pre-training, e.g. auto-encoders. However, the classifier further needs supervised fine-tuning methods for good discrimination. Besides, due to the limits of full-connection, the application of auto-encoders is usually limited to small, well aligned images. In this paper, we incorporate the supervised information to propose a novel formulation, namely class-encoder, whose training objective is to reconstruct a sample from another one of which the labels are identical. Class-encoder aims to minimize the intra-class variations in the feature space, and to learn a good discriminative manifolds on a class scale. We impose the class-encoder as a constraint into the softmax for better supervised training, and extend the reconstruction on feature-level to tackle the parameter size issue and translation issue. The experiments show that the class-encoder helps to improve the performance on benchmarks of classification and face recognition. This could also be a promising direction for fast training of face recognition models.Comment: Accepted by CVPR2016 Workshop of Robust Features for Computer Visio
    corecore